高中必背88個數學公式有哪些
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(二)倍角公式
1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA
(三)半角公式
1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
(四)和差化積
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(五)幾何體表面積和體積公式
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高)
3、正方體:表面積:S=6a2,體積:V=a3(a-邊長)
4、長方體:表面積:S=2(ab+ac+bc)體積:V=abc(a-長,b-寬,c-高)
5、棱柱:體積:V=Sh(S-底面積,h-高)
6、棱錐:體積:V=Sh/3(S-底面積,h-高)
7、棱臺:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面積,S2下底面積,h-高)
8、擬柱體:V=h(S1+S2+4S0)/6(S1-上底面積,S2-下底面積,S0-中截面積,h-高)
9、圓柱:S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
(r-底半徑,h-高,C—底面周長,S底—底面積,S側—側面積,S表—表面積)
10、空心圓柱:V=πh(R^2-r^2)(R-外圓半徑,r-內圓半徑,h-高)
11、直圓錐:V=πr^2h/3(r-底半徑,h-高)
12、圓臺:V=πh(R2+Rr+r2)/3(r-上底半徑,R-下底半徑,h-高)
13、球:V=4/3πr^3=πd^3/6(r-半徑,d-直徑)
14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半徑,a-球缺底半徑)
15、球臺:V=πh[3(r12+r22)+h2]/6(r1球臺上底半徑,r2-球臺下底半徑,h-高)
16、圓環體:V=2π2Rr2=π2Dd2/4(R-環體半徑,D-環體直徑,r-環體截面半徑,d-環體截面直徑)
高中必背的圓的公式
(一)圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長=2(pi)r
4、圓的標準方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
(二)橢圓公式
1、橢圓周長公式:l=2πb+4(a-b)
2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積
高中數學怎么學習
數學的學習時間應該占全部總學科的50%左右;
數學是一個費時費力的學科,無論文理。對于文科和理科來說,數學的高考成績都是重中之重。比如文科,鮮有聽到一個班文綜成績能差60分以上的,但數學別說60,80都能差出來。對于理科,物理,化學都需要大量的運算,數學的學習又是提供一種工具與思維。因此,對于之前的文理科,抑或是現在取消文理以后的偏文,偏理科來說,數學都是非常重要的。
每一道數學題都值得做三遍;
對于每一道數學題(特別特別簡單的除外),都要做三遍。
第1遍就是正常做,然后對照參考答案與解題思路,更正答案。
第2遍做一般是隔天效果最好,重新再快速地把之前所有的題目全部都重新做一遍,這個“做”不是和第1遍一樣1字不差,從頭到尾地演算。而是要針對關鍵步驟,關鍵思路進行整理。比如之前看到某一個題目的時候,我們的想法是A,結果正確的解題思路是B,A和B相比差異非常大。這個時候我們就需要通過第2遍做,更正我們的思路,糾正我們的思維方式,改變我們的思考習慣。第2遍做的時候,還是出錯的題目,就一定要用星號重點標注,留備復習使用。
提高數學成績的竅門
一、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。
首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。
對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。