我爱古诗词_国产一级片_古诗词名句赏析学习平台

我愛古詩詞 > 名家名篇 > 高考必背 >

高考數學必備知識點及公式總結

時間: 舒淇 高考必背

高考數學必備知識點及公式總結

1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

中元素各表示什么?

注重借助于數軸和文氏圖解集合問題。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性質:

(3)德摩根定律:

4.你會用補集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6.命題的四種形式及其相互關系是什么?

(互為逆否關系的命題是等價命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

(一對一,多對一,允許B中有元素無原象。)

8.函數的三要素是什么?如何比較兩個函數是否相同?

(定義域、對應法則、值域)

9.求函數的定義域有哪些常見類型?

10.如何求復合函數的定義域?

義域是_____________。

11.求一個函數的解析式或一個函數的反函數時,注明函數的定義域了嗎?

12.反函數存在的條件是什么?

(一一對應函數)

求反函數的步驟掌握了嗎?

(①反解x;②互換x、y;③注明定義域)

13.反函數的性質有哪些?

①互為反函數的圖象關于直線y=x對稱;

②保存了原來函數的單調性、奇函數性;

14.如何用定義證明函數的單調性?

(取值、作差、判正負)

如何判斷復合函數的單調性?

∴……)

15.如何利用導數判斷函數的單調性?

值是()

A.0B.1C.2D.3

∴a的最大值為3)

16.函數f(x)具有奇偶性的必要(非充分)條件是什么?

(f(x)定義域關于原點對稱)

注意如下結論:

(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。

17.你熟悉周期函數的定義嗎?

函數,T是一個周期。)

如:

18.你掌握常用的圖象變換了嗎?

注意如下“翻折”變換:

19.你熟練掌握常用函數的圖象和性質了嗎?

的雙曲線。

應用:①“三個二次”(二次函數、二次方程、二次不等式)的關系——二次方程

②求閉區間[m,n]上的最值。

③求區間定(動),對稱軸動(定)的最值問題。

④一元二次方程根的分布問題。

由圖象記性質!(注意底數的限定!)

利用它的單調性求最值與利用均值不等式求最值的區別是什么?

20.你在基本運算上常出現錯誤嗎?

21.如何解抽象函數問題?

(賦值法、結構變換法)

22.掌握求函數值域的常用方法了嗎?

(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)

如求下列函數的最值:

23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?

24.熟記三角函數的定義,單位圓中三角函數線的定義

25.你能迅速畫出正弦、余弦、正切函數的圖象嗎?并由圖象寫出單調區間、對稱點、對稱軸嗎?

(x,y)作圖象。

27.在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。

28.在解含有正、余弦函數的問題時,你注意(到)運用函數的有界性了嗎?

29.熟練掌握三角函數圖象變換了嗎?

(平移變換、伸縮變換)

平移公式:

圖象?

30.熟練掌握同角三角函數關系和誘導公式了嗎?

“奇”、“偶”指k取奇、偶數。

A.正值或負值B.負值C.非負值D.正值

31.熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?

理解公式之間的聯系:

應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)

具體方法:

(2)名的變換:化弦或化切

(3)次數的變換:升、降冪公式

(4)形的變換:統一函數形式,注意運用代數運算。

32.正、余弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?

(應用:已知兩邊一夾角求第三邊;已知三邊求角。)

33.用反三角函數表示角時要注意角的范圍。

34.不等式的性質有哪些?

答案:C

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下結論:

36.不等式證明的基本方法都掌握了嗎?

(比較法、分析法、綜合法、數學歸納法等)

并注意簡單放縮法的應用。

(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)

38.用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始

39.解含有參數的不等式要注意對字母參數的討論

40.對含有兩個絕對值的不等式如何去解?

(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)

證明:

(按不等號方向放縮)

42.不等式恒成立問題,常用的處理方式是什么?(可轉化為最值問題,或“△”問題)

43.等差數列的定義與性質

0的二次函數)

項,即:

44.等比數列的定義與性質

46.你熟悉求數列通項公式的常用方法嗎?

例如:(1)求差(商)法

解:

[練習]

(2)疊乘法

解:

(3)等差型遞推公式

[練習]

(4)等比型遞推公式

[練習]

(5)倒數法

47.你熟悉求數列前n項和的常用方法嗎?

例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。

解:

[練習]

(2)錯位相減法:

(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。

[練習]

48.你知道儲蓄、貸款問題嗎?

△零存整取儲蓄(單利)本利和計算模型:

若每期存入本金p元,每期利率為r,n期后,本利和為:

△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)

若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應還x元,滿足

p——貸款數,r——利率,n——還款期數

49.解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一

(3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不

50.解排列與組合問題的規律是:

相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數量不大時可以逐一排出結果。

如:學號為1,2,3,4的四名學生的考試成績

則這四位同學考試成績的所有可能情況是()

A.24B.15C.12D.10

解析:可分成兩類:

(2)中間兩個分數相等

相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。

∴共有5+10=15(種)情況

51.二項式定理

性質:

(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第

表示)

52.你對隨機事件之間的關系熟悉嗎?

的和(并)。

(5)互斥事件(互不相容事件):“A與B不能同時發生”叫做A、B互斥。

(6)對立事件(互逆事件):

(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。

53.對某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

(5)如果在一次試驗中A發生的概率是p,那么在n次獨立重復試驗中A恰好發生

如:設10件產品中有4件次品,6件正品,求下列事件的概率。

(1)從中任取2件都是次品;

(2)從中任取5件恰有2件次品;

(3)從中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品為“恰有2次品”和“三件都是次品”

(4)從中依次取5件恰有2件次品。

解析:∵一件一件抽取(有順序)

分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。

54.抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用于總體個數較少時,它的特征是從總體中逐個抽取;系統抽樣,常用于總體個數較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。

55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。

要熟悉樣本頻率直方圖的作法:

(2)決定組距和組數;

(3)決定分點;

(4)列頻率分布表;

(5)畫頻率直方圖。

如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。

56.你對向量的有關概念清楚嗎?

(1)向量——既有大小又有方向的量。

在此規定下向量可以在平面(或空間)平行移動而不改變。

(6)并線向量(平行向量)——方向相同或相反的向量。

規定零向量與任意向量平行。

(7)向量的加、減法如圖:

(8)平面向量基本定理(向量的分解定理)

的一組基底。

(9)向量的坐標表示

表示。

57.平面向量的數量積

數量積的幾何意義:

(2)數量積的運算法則

[練習]

答案:

答案:2

答案:

58.線段的定比分點

※.你能分清三角形的重心、垂心、外心、內心及其性質嗎?

59.立體幾何中平行、垂直關系證明的思路清楚嗎?

平行垂直的證明主要利用線面關系的轉化:

線面平行的判定:

線面平行的性質:

三垂線定理(及逆定理):

線面垂直:

面面垂直:

60.三類角的定義及求法

(1)異面直線所成的角θ,0°<θ≤90°

(2)直線與平面所成的角θ,0°≤θ≤90°

(三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)

三類角的求法:

①找出或作出有關的角。

②證明其符合定義,并指出所求作的角。

③計算大小(解直角三角形,或用余弦定理)。

[練習]

(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。

(2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。

①求BD1和底面ABCD所成的角;

②求異面直線BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。

(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)

61.空間有幾種距離?如何求距離?

點與點,點與線,點與面,線與線,線與面,面與面間距離。

將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。

如:正方形ABCD—A1B1C1D1中,棱長為a,則:

(1)點C到面AB1C1的距離為___________;

(2)點B到面ACB1的距離為____________;

(3)直線A1D1到面AB1C1的距離為____________;

(4)面AB1C與面A1DC1的距離為____________;

(5)點B到直線A1C1的距離為_____________。

62.你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質?

正棱柱——底面為正多邊形的直棱柱

正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

正棱錐的計算集中在四個直角三角形中:

它們各包含哪些元素?

63.球有哪些性質?

(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!

(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。

(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。

積為()

答案:A

64.熟記下列公式了嗎?

(2)直線方程:

65.如何判斷兩直線平行、垂直?

66.怎樣判斷直線l與圓C的位置關系?

圓心到直線的距離與圓的半徑比較。

直線與圓相交時,注意利用圓的“垂徑定理”。

67.怎樣判斷直線與圓錐曲線的位置?

68.分清圓錐曲線的定義

70.在圓錐曲線與直線聯立求解時,消元后得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)

71.會用定義求圓錐曲線的焦半徑嗎?

如:

通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準線相切。

72.有關中點弦問題可考慮用“代點法”。

答案:

73.如何求解“對稱”問題?

(1)證明曲線C:F(x,y)=0關于點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關于點M的對稱點。

75.求軌跡方程的常用方法有哪些?注意討論范圍。

(直接法、定義法、轉移法、參數法)

76.對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。

高考數學必備公式

1、函數的單調性

(1)設x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函數;

f(x1)f(x2)0f(x)在[a,b]上是減函數.

(2)設函數yf(x)在某個區間內可導,若f(x)0,則f(x)為增函數;若f(x)0,則f(x)為減函數.

2、函數的奇偶性

對于定義域內任意的x,都有f(-x)=f(x),則f(x)是偶函數; 對于定義域內任意的x,都有f(x)f(x),則f(x)是奇函數。 奇函數的圖象關于原點對稱,偶函數的圖象關于y軸對稱。

3、判別式

b2-4ac=0 注:方程有兩個相等的實根

b2-4ac>0 注:方程有兩個不等的實根

b2-4ac<0 注:方程沒有實根,有共軛復數根

4、兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

5、倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

6、拋物線

1、拋物線:y=ax_+bx+c就是y等于ax的平方加上bx再加上c。

a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經過原點;b=0時拋物線對稱軸為y軸。

2、頂點式y=a(x+h)_+k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用于求最大值與最小值。

3、拋物線標準方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。

4、準線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標準方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

學好高中數學的方法

學習高中數學上,需要形成自己獨立數學思維能力,遇到數學題上我們需要多多進行獨立思考,不斷摸索數學解題思路,一道數學題可能有很多種解答方法,你可以選擇適合自己的答題方法去解答,這樣也能夠提升自己數學答題效率。自己多動腦思考也方便在今后的數學解題中更好地運用答題技巧。

學好高中數學,我們要做好數學課前預習和課后復習工作,這是非常必要的步驟,課前預習中能夠讓我們在上課的時候緊跟老師講課的思路,帶著課前數學預習中的問題去思考答案,有助于養成數學思維,課后對于數學上的復習工作,能夠讓我們鞏固好數學重要知識點,加深上課所講知識的印象。

在高中數學的學習中,有很多需要我們記憶背誦的數學公式以及定理,這些都是我們在學習數學上的一些基礎知識,我們一定要把相關的數學公式以及定理背下來,這樣也方便我們解答高中數學題。

高三數學0基礎怎么學

1.首先最重要的一點,我們要及時的預習。預習明天老師所要上的知識,章節和內容。很多學生都不重視預習,其實預習對于學好數學,也是蠻重要的一步。因為我們只有預習過明天老師要上課的知識和內容,我們才能在上課的時候及時地跟住老師的思路,同時也才能更好地理解和消化老師在上課所講的內容。反之,如果沒有經過預習的話,我們在上課的時候就很難跟上老師的思路,從而也會導致我們很容易的分神和分心。形成惡性循環。導致成績越來越差。

2.在上數學課時,要認真地聽老師講課,跟緊老師的思路。現在許多的高中學生都有這樣一個毛病--不喜歡聽老師講課,不認真的聽課。有的學生是因為基礎比較差,難以聽懂,所以不認真的聽課。哎呀,我的學生只是技術比較好的,覺得老師講的內容太簡單了,自己都會了,所以也不認真聽課。其實這都是不好的,同時也是一個跨習慣。不管是老師講的內容是簡單的還是男的。首先我們都要認真聽課。因為老師在講課的過程中,會講到,很多的重點難點以及他,高考的必考點,甚至是比兒子段考和期考的考點。老師的教學經驗豐富,他肯定會知道哪些知識點比較重要,哪些知識點,容易錯,哪些知識點容易出現錯誤?應是聽老師講課,是一個很明智的選擇。

3.課后及時的復習當天數學老師所講的內容,以及老師在課堂上所講過的例題,和老師講過的題目、重點難點。首先,我們復習的時候先閉上眼睛,細細的回憶,老師上課的內容以及他說過的知識點。我們閉上眼睛仔細回憶之后,我們再打開課本,再溫習一遍。及時的復習和溫習老師當天所講的內容其實是很重要的。因為有很多同學都是在上課的時候聽懂了,但是又往往由于他不及時地復習,導致知識點的遺漏、遺忘。這是很正常的,所以我們要及時的復習和溫習老師當天所講過的內容。

高三如何學好數學

1.課前預習數學,是很多人忽略的環節,它的重要性大家也都知道,我想說的是,你的課前預習不僅僅是看看書就好了,而應該試圖自己理解這節講什么(關鍵 是自己理解),很簡單就是你看了一遍三角函數,就合上書想想三角函數是什么?我能用它來干嘛?這種疑問會給你帶來淺層的印象,上課時你立刻就有代入感了, 就像很多人玩游戲要先看下攻略啊,這樣碰到問題就可以嘗試各種方法來解決它。

2.如果你課前和課上都做得很好,那么課下這個環節就很好辦啦?很多人說自己上課什么都會,做題什么都錯!或者做題什么都會,考試什么都錯!這就是 沒有重視課下的結果。在課下,你應該再讀一遍這節課學習的內容,然后每個公式和定義都要自己推導一遍!!這個十分關鍵,只有你自己不看書推導一遍公式,或 者自己復述定義的時候,你才知道你那里不會,而且推導這些公式絕對使你不用再刻意的記憶什么公式,而是信手拈來的。

3.確定目標適當放棄。高考數學試卷在試題設計上都是有梯度的,所以我們要根據自己的學習情況,適當的放棄一部分較難的或者目前根本無法實現的內容,把學習精力和重心放在高考必考以及可以突破的這些題目上,對于較難的題目或者無法實現的內容盡量不要花大量時間,當然也不是完全放棄,可以學習一些技巧,掌握一些結論適當的爭取一些分數。

170917 主站蜘蛛池模板: PVC地板|PVC塑胶地板|PVC地板厂家|地板胶|防静电地板-无锡腾方装饰材料有限公司-咨询热线:4008-798-128 | 华夏医界网_民营医疗产业信息平台_民营医院营销管理培训 | 探鸣起名网-品牌起名-英文商标起名-公司命名-企业取名包满意 | 深圳激光打标机_激光打标机_激光焊接机_激光切割机_同体激光打标机-深圳市创想激光科技有限公司 深圳快餐店设计-餐饮设计公司-餐饮空间品牌全案设计-深圳市勤蜂装饰工程 | 成都中天自动化控制技术有限公司| 产业规划_产业园区规划-产业投资选址及规划招商托管一体化服务商-中机院产业园区规划网 | 东莞海恒试验仪器设备有限公司 | Honsberg流量计-Greisinger真空表-气压计-上海欧臻机电设备有限公司 | 高铝砖-高铝耐火球-高铝耐火砖生产厂家-价格【荣盛耐材】 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | 复合土工膜厂家|hdpe防渗土工膜|复合防渗土工布|玻璃纤维|双向塑料土工格栅-安徽路建新材料有限公司 | 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 台式核磁共振仪,玻璃软化点测定仪,旋转高温粘度计,测温锥和测温块-上海麟文仪器 | 泰州物流公司_泰州货运公司_泰州物流专线-东鑫物流公司 | 即用型透析袋,透析袋夹子,药敏纸片,L型涂布棒-上海桥星贸易有限公司 | 临朐空调移机_空调维修「空调回收」临朐二手空调 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 耳模扫描仪-定制耳机设计软件-DLP打印机-asiga打印机-fitshape「飞特西普」 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 中国品牌门窗网_中国十大门窗品牌_著名门窗品牌 | 精准猎取科技资讯,高效阅读科技新闻_科技猎 | IIS7站长之家-站长工具-爱网站请使用IIS7站长综合查询工具,中国站长【WWW.IIS7.COM】 | 浙江栓钉_焊钉_剪力钉厂家批发_杭州八建五金制造有限公司 | 交变/复合盐雾试验箱-高低温冲击试验箱_安奈设备产品供应杭州/江苏南京/安徽马鞍山合肥等全国各地 | 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | 北京征地律师,征地拆迁律师,专业拆迁律师,北京拆迁律师,征地纠纷律师,征地诉讼律师,征地拆迁补偿,拆迁律师 - 北京凯诺律师事务所 | 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 找培训机构_找学习课程_励普教育| wika威卡压力表-wika压力变送器-德国wika代理-威卡总代-北京博朗宁科技 | 搪瓷搅拌器,搪玻璃搅拌器,搪玻璃冷凝器_厂家-淄博越宏化工设备 | 真空上料机(一种真空输送机)-百科 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 水环真空泵厂家,2bv真空泵,2be真空泵-淄博真空设备厂 | 北京律师事务所_房屋拆迁律师_24小时免费法律咨询_云合专业律师网 | 粘度计,数显粘度计,指针旋转粘度计| 无菌检查集菌仪,微生物限度仪器-苏州长留仪器百科 | 工业淬火油烟净化器,北京油烟净化器厂家,热处理油烟净化器-北京众鑫百科 | 丁基胶边来料加工,医用活塞边角料加工,异戊二烯橡胶边来料加工-河北盛唐橡胶制品有限公司 | 上海办公室装修_上海店铺装修公司_厂房装潢设计_办公室装修 | 安徽合肥格力空调专卖店_格力中央空调_格力空调总经销公司代理-皖格制冷设备 |